inhibitor can be effective to reduce activity of PKC δ I and is not effective to reduce the activity of PKC α , PKC β , PKC γ , PKC ε I inhibitor can simultaneously bind the DMQD amino acid sequence within the V3 hinge region of PKC δ I and the active site on the C2 domain of PKC δ I. The PKC δ I disorder can be diabetes, a cancer, an inflammatory, disease obesity, insulin resistance, metabolic syndrome hepatosteatosis, a cardiovascular disease, a neurodegenerative disease or a symptom thereof. The effective amount of the PKC δ I inhibitor can range from about 0.001 micrograms to about 1 g. [0006] In some aspects, provided herein are methods of reducing adipocyte apoptosis in a subject in need thereof that can include the step of administering a pharmaceutical formulation comprising an effective amount of PKC8I inhibitor to the subject in need thereof, wherein the PKC8I inhibitor is a compound having a Formula as in any one of Formulas 1 and 3-7 Formula 1 HN HN NH, HN NH NH NH NH Formula 3 Formula 4 O N CH₃ -continued Formula 5 NH NH NH OH, CH3 CH3 Formula 6 H₃C CH₃ N CH₃, HN OH Formula H₃C OH. CH₃ N N [0007] The PKC δ I inhibitor can be effective to reduce PKC δ I activity in the subject in need thereof. The PKC δ I inhibitor can be effective to reduce PKC δ I activity in an adipocyte in the subject in need thereof. The PKC δ I inhibitor is a compound according to Formula 1. The PKC δ I inhibitor can be effective to reduce the activity of PKC δ I and is not effective to reduce the activity of PKC δ I and is not effective to reduce the activity of PKC δ I, PKC δ III or any combination thereof. The PKC δ I inhibitor can simultaneously bind the DMQD amino acid sequence within the V3 hinge region of PKC δ I and the active site on the C2 domain of PKC δ I. The subject in need thereof can have diabetes, a cancer, an inflammatory, disease obesity, insulin resistance, metabolic syndrome hepatosteatosis, a cardiovascular disease, a neurodegenerative disease or a symptom thereof. [0008] Also provided herein are pharmaceutical formulations that can have an amount of a PKC δ I inhibitor, wherein the amount can be an effective amount that can reduce PKC δ I activity in a subject, and wherein the PKC δ I inhibitor can be a compound having a Formula as in any one of Formulas 1 and 3-7